\(\int \frac {x^2}{(c+a^2 c x^2)^{5/2} \sqrt {\arctan (a x)}} \, dx\) [968]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [F]
   Fricas [F(-2)]
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 131 \[ \int \frac {x^2}{\left (c+a^2 c x^2\right )^{5/2} \sqrt {\arctan (a x)}} \, dx=\frac {\sqrt {\frac {\pi }{2}} \sqrt {1+a^2 x^2} \operatorname {FresnelC}\left (\sqrt {\frac {2}{\pi }} \sqrt {\arctan (a x)}\right )}{2 a^3 c^2 \sqrt {c+a^2 c x^2}}-\frac {\sqrt {\frac {\pi }{6}} \sqrt {1+a^2 x^2} \operatorname {FresnelC}\left (\sqrt {\frac {6}{\pi }} \sqrt {\arctan (a x)}\right )}{2 a^3 c^2 \sqrt {c+a^2 c x^2}} \]

[Out]

-1/12*FresnelC(6^(1/2)/Pi^(1/2)*arctan(a*x)^(1/2))*6^(1/2)*Pi^(1/2)*(a^2*x^2+1)^(1/2)/a^3/c^2/(a^2*c*x^2+c)^(1
/2)+1/4*FresnelC(2^(1/2)/Pi^(1/2)*arctan(a*x)^(1/2))*2^(1/2)*Pi^(1/2)*(a^2*x^2+1)^(1/2)/a^3/c^2/(a^2*c*x^2+c)^
(1/2)

Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {5091, 5090, 4491, 3385, 3433} \[ \int \frac {x^2}{\left (c+a^2 c x^2\right )^{5/2} \sqrt {\arctan (a x)}} \, dx=\frac {\sqrt {\frac {\pi }{2}} \sqrt {a^2 x^2+1} \operatorname {FresnelC}\left (\sqrt {\frac {2}{\pi }} \sqrt {\arctan (a x)}\right )}{2 a^3 c^2 \sqrt {a^2 c x^2+c}}-\frac {\sqrt {\frac {\pi }{6}} \sqrt {a^2 x^2+1} \operatorname {FresnelC}\left (\sqrt {\frac {6}{\pi }} \sqrt {\arctan (a x)}\right )}{2 a^3 c^2 \sqrt {a^2 c x^2+c}} \]

[In]

Int[x^2/((c + a^2*c*x^2)^(5/2)*Sqrt[ArcTan[a*x]]),x]

[Out]

(Sqrt[Pi/2]*Sqrt[1 + a^2*x^2]*FresnelC[Sqrt[2/Pi]*Sqrt[ArcTan[a*x]]])/(2*a^3*c^2*Sqrt[c + a^2*c*x^2]) - (Sqrt[
Pi/6]*Sqrt[1 + a^2*x^2]*FresnelC[Sqrt[6/Pi]*Sqrt[ArcTan[a*x]]])/(2*a^3*c^2*Sqrt[c + a^2*c*x^2])

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 4491

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 5090

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^q/c^(m
 + 1), Subst[Int[(a + b*x)^p*(Sin[x]^m/Cos[x]^(m + 2*(q + 1))), x], x, ArcTan[c*x]], x] /; FreeQ[{a, b, c, d,
e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0])

Rule 5091

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^(q + 1
/2)*(Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]), Int[x^m*(1 + c^2*x^2)^q*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b,
 c, d, e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] &&  !(IntegerQ[q] || GtQ[d, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {1+a^2 x^2} \int \frac {x^2}{\left (1+a^2 x^2\right )^{5/2} \sqrt {\arctan (a x)}} \, dx}{c^2 \sqrt {c+a^2 c x^2}} \\ & = \frac {\sqrt {1+a^2 x^2} \text {Subst}\left (\int \frac {\cos (x) \sin ^2(x)}{\sqrt {x}} \, dx,x,\arctan (a x)\right )}{a^3 c^2 \sqrt {c+a^2 c x^2}} \\ & = \frac {\sqrt {1+a^2 x^2} \text {Subst}\left (\int \left (\frac {\cos (x)}{4 \sqrt {x}}-\frac {\cos (3 x)}{4 \sqrt {x}}\right ) \, dx,x,\arctan (a x)\right )}{a^3 c^2 \sqrt {c+a^2 c x^2}} \\ & = \frac {\sqrt {1+a^2 x^2} \text {Subst}\left (\int \frac {\cos (x)}{\sqrt {x}} \, dx,x,\arctan (a x)\right )}{4 a^3 c^2 \sqrt {c+a^2 c x^2}}-\frac {\sqrt {1+a^2 x^2} \text {Subst}\left (\int \frac {\cos (3 x)}{\sqrt {x}} \, dx,x,\arctan (a x)\right )}{4 a^3 c^2 \sqrt {c+a^2 c x^2}} \\ & = \frac {\sqrt {1+a^2 x^2} \text {Subst}\left (\int \cos \left (x^2\right ) \, dx,x,\sqrt {\arctan (a x)}\right )}{2 a^3 c^2 \sqrt {c+a^2 c x^2}}-\frac {\sqrt {1+a^2 x^2} \text {Subst}\left (\int \cos \left (3 x^2\right ) \, dx,x,\sqrt {\arctan (a x)}\right )}{2 a^3 c^2 \sqrt {c+a^2 c x^2}} \\ & = \frac {\sqrt {\frac {\pi }{2}} \sqrt {1+a^2 x^2} \operatorname {FresnelC}\left (\sqrt {\frac {2}{\pi }} \sqrt {\arctan (a x)}\right )}{2 a^3 c^2 \sqrt {c+a^2 c x^2}}-\frac {\sqrt {\frac {\pi }{6}} \sqrt {1+a^2 x^2} \operatorname {FresnelC}\left (\sqrt {\frac {6}{\pi }} \sqrt {\arctan (a x)}\right )}{2 a^3 c^2 \sqrt {c+a^2 c x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.19 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.21 \[ \int \frac {x^2}{\left (c+a^2 c x^2\right )^{5/2} \sqrt {\arctan (a x)}} \, dx=-\frac {i \sqrt {1+a^2 x^2} \left (3 \sqrt {-i \arctan (a x)} \Gamma \left (\frac {1}{2},-i \arctan (a x)\right )-3 \sqrt {i \arctan (a x)} \Gamma \left (\frac {1}{2},i \arctan (a x)\right )+\sqrt {3} \left (-\sqrt {-i \arctan (a x)} \Gamma \left (\frac {1}{2},-3 i \arctan (a x)\right )+\sqrt {i \arctan (a x)} \Gamma \left (\frac {1}{2},3 i \arctan (a x)\right )\right )\right )}{24 a^3 c^2 \sqrt {c \left (1+a^2 x^2\right )} \sqrt {\arctan (a x)}} \]

[In]

Integrate[x^2/((c + a^2*c*x^2)^(5/2)*Sqrt[ArcTan[a*x]]),x]

[Out]

((-1/24*I)*Sqrt[1 + a^2*x^2]*(3*Sqrt[(-I)*ArcTan[a*x]]*Gamma[1/2, (-I)*ArcTan[a*x]] - 3*Sqrt[I*ArcTan[a*x]]*Ga
mma[1/2, I*ArcTan[a*x]] + Sqrt[3]*(-(Sqrt[(-I)*ArcTan[a*x]]*Gamma[1/2, (-3*I)*ArcTan[a*x]]) + Sqrt[I*ArcTan[a*
x]]*Gamma[1/2, (3*I)*ArcTan[a*x]])))/(a^3*c^2*Sqrt[c*(1 + a^2*x^2)]*Sqrt[ArcTan[a*x]])

Maple [F]

\[\int \frac {x^{2}}{\left (a^{2} c \,x^{2}+c \right )^{\frac {5}{2}} \sqrt {\arctan \left (a x \right )}}d x\]

[In]

int(x^2/(a^2*c*x^2+c)^(5/2)/arctan(a*x)^(1/2),x)

[Out]

int(x^2/(a^2*c*x^2+c)^(5/2)/arctan(a*x)^(1/2),x)

Fricas [F(-2)]

Exception generated. \[ \int \frac {x^2}{\left (c+a^2 c x^2\right )^{5/2} \sqrt {\arctan (a x)}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x^2/(a^2*c*x^2+c)^(5/2)/arctan(a*x)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

Sympy [F]

\[ \int \frac {x^2}{\left (c+a^2 c x^2\right )^{5/2} \sqrt {\arctan (a x)}} \, dx=\int \frac {x^{2}}{\left (c \left (a^{2} x^{2} + 1\right )\right )^{\frac {5}{2}} \sqrt {\operatorname {atan}{\left (a x \right )}}}\, dx \]

[In]

integrate(x**2/(a**2*c*x**2+c)**(5/2)/atan(a*x)**(1/2),x)

[Out]

Integral(x**2/((c*(a**2*x**2 + 1))**(5/2)*sqrt(atan(a*x))), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^2}{\left (c+a^2 c x^2\right )^{5/2} \sqrt {\arctan (a x)}} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate(x^2/(a^2*c*x^2+c)^(5/2)/arctan(a*x)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: expt: undefined: 0 to a negative exponent.

Giac [F]

\[ \int \frac {x^2}{\left (c+a^2 c x^2\right )^{5/2} \sqrt {\arctan (a x)}} \, dx=\int { \frac {x^{2}}{{\left (a^{2} c x^{2} + c\right )}^{\frac {5}{2}} \sqrt {\arctan \left (a x\right )}} \,d x } \]

[In]

integrate(x^2/(a^2*c*x^2+c)^(5/2)/arctan(a*x)^(1/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (c+a^2 c x^2\right )^{5/2} \sqrt {\arctan (a x)}} \, dx=\int \frac {x^2}{\sqrt {\mathrm {atan}\left (a\,x\right )}\,{\left (c\,a^2\,x^2+c\right )}^{5/2}} \,d x \]

[In]

int(x^2/(atan(a*x)^(1/2)*(c + a^2*c*x^2)^(5/2)),x)

[Out]

int(x^2/(atan(a*x)^(1/2)*(c + a^2*c*x^2)^(5/2)), x)